LA-UR-14-25493 Approved for public release; distribution is unlimited. Optimal Kinodynamic Motion Planning in Environments with Unexpected Title: Obstacles Author(s): Boardman, Beth Leigh Harden, Troy Anthony Martinez, Sonia Intended for: LANL Student Symposium Issued: 2014-07-18 # Optimal Kinodynamic Motion Planning in Environments with Unexpected Obstacles Beth Boardman,^{1,2} Troy Harden,² and Sonia Martínez¹ ¹Department of Mechanical and Aerospace Engineering University of California, San Diego ²Applied Engineering and Technology, Group 5 Los Alamos National Laboratory July 16, 2014 #### **Engineering Institute** ## Overview - Introduction - Motivation - Background - Goal Tree Algorithm - Optimality of the Goal Tree Algorithm - Characterizations of the New Sampling Region - Goal Tree Algorithm Simulation - Conclusion ## **Outline** - Introduction - Motivation - Background - Goal Tree Algorithm - Optimality of the Goal Tree Algorithm - Characterizations of the New Sampling Region - Goal Tree Algorithm Simulation - Conclusion ## Motivation 7 Degree-of-freedom manipulator in a glovebox working with humans and/or other manipulators - Real-time path planning - Want optimal (near-optimal) path - Environment has moving/changing obstacles - Replan, or "fix," path quickly when obstructed by unexpected obstacles ## A Short Introduction to Graph Theory [Bullo, 2009] - A graph is a set of vertices (nodes) and edges (order pair of vertices) - Graphs can be undirected or directed (i.e. can travel forward but not backwards) - The edges can be unweighted or weighted (i.e. cost to get from one node to another) ### **Useful Notation** - Configuration, x: Complete specification of every position of the robot (i.e. position, velocity, orientation) - Configuration Space, X: Set of all configurations - Obstacle Space, X_{obs}: Set of all configurations that will cause a collision with itself or an obstacle - Free Space, X_{free} : $X_{\text{free}} = X \setminus X_{\text{obs}}$ - ∂S : Boundary of a set S - \mathscr{O} : New obstacle information (i.e. $\mathscr{O} \not\subset X_{\text{obs}}$) - \mathcal{T}_G : Tree rooted at x_G - \mathcal{T}_l : Tree rooted at $x_{l'}$ ## What is Motion Planning? [Lavalle, 2006] - Determining how a robot should move to complete a given task - Types of motion planners - Discrete Planners (i.e. D*, D* Lite) - Bug Algorithms - Sampling-Based Planners - Static Environments (i.e. RRT, RRT*, PRM, PRM*, RRT#) - Dynamic Environments (i.e. DRRT, RRF, LRF, ERRT, MP-RRT) Figure: RRT* after 999 iterations. Figure: Randomly sample from the configuration space. Let's zoom in! Figure: Zoomed in section with new sample, x_{new} , point to be added. Figure: Find all neighbors within a given radius. Figure: x_{new} 's parent: lowest cost-to-come and collision free edge. Figure: Rewire: Check neighbors as children of x_{new} . Figure: 1000 iterations complete! Figure: RRT* after 10,000 iterations ## **Outline** - Introduction - Motivation - Background - Goal Tree Algorithm - Optimality of the Goal Tree Algorithm - Characterizations of the New Sampling Region - Goal Tree Algorithm Simulation - Conclusion ## Goal Tree Algorithm Overview #### Want to: - Adapt the RRT* to handle unexpected obstacles, O - Reduce the runtime in comparison to rerunning the RRT* - Recover the optimal path from $x_{l'}$ to x_{G} #### Do this by: - Build a tree, \mathcal{T}_G , whose branches all lead to the goal w.r.t X_{obs} - Trim \mathcal{T}_G to reflect conflicts with \mathscr{O} - Build new RRT* in "affected area," \(\mathcal{T}_I \) - Add branches from \mathcal{T}_G to \mathcal{T}_I ## Goal Tree Algorithm Details - Robot is executing a path from \(\mathcal{T}_G \) - \mathscr{O} is found to be obstructing the path, \mathscr{T}_G is trimmed - Robot initializes a new tree, \mathcal{I}_l , at its current configuration - \mathcal{T}_l is extended toward a random sample - An attempt is made to connect the new vertex in \mathcal{T}_l to a vertex in \mathcal{T}_G - If the attempt is successful, then the entire path from the vertex in \mathcal{T}_G to x_G is added to \mathcal{T}_I Figure: An illustrative example of how the Goal Tree algorithm works. ## **Outline** - Introduction - Motivation - Background - Goal Tree Algorithm - 3 Optimality of the Goal Tree Algorithm - Characterizations of the New Sampling Region - 4 Goal Tree Algorithm Simulation - Conclusion ## **Optimality Overview** - Where can \mathcal{T}_l sample to recover the optimal path? - In"affected area" - Around 𝒪 - How can we reduce the algorithm runtime - Sample in a small region, R, (i.e. $R \subsetneq X$) - Limiting the collision checks to only obstacles in R Vertex positions of a typical \mathcal{T}_G before \mathcal{O} is found. Vertex positions of a typical \mathcal{T}_G after \mathcal{O} is found. ## Robot with No Differential Constraints: Theorem #### **Theorem** Let X be a d-dimensional C-space such that $d \in \mathbb{N}$ and $d \ge 2$. Let the initial obstacle space be X_{obs} and let $\mathscr{O} \not\subset X_{\text{obs}}$ be new obstacle information. For simplicity, assume that $\mathscr{O} \cap X_{\text{obs}} = \varnothing$. If - X is the Euclidean metric space, - $\mathcal{O} \subset R \subset X$, - R is convex, and then the GT algorithm will converge to a globally optimal path, π , as $n \to \infty$ by constructing $\mathcal{T}_{l'}$ using R and the \mathscr{O} information and employing \mathcal{T}_{G} with the previous X_{obs} . ## Robot with No Differential Constraints: Proof Figure: The gray lines represent possible paths to x_G with the optimal path in black. The boundary of a possible new sampling region is in blue. The region defined by the blue has all the properties specified in the previous theorem. ## Robot with General Differential Constraints #### Definition The shadow of x_G on \mathscr{O} , $\mathscr{S}_{\mathscr{O}}$, is the envelope or hull, as defined by position rather than configuration, formed by the geodesics from all configurations in X_{free} going to x_G that are in conflict with \mathscr{O} . #### Theorem Let $\mathscr{S}_{\mathscr{O}}$ be as in Definition 1. If the Goal Tree algorithm uses $\mathscr{S}_{\mathscr{O}}$ as the new sampling region to build \mathscr{T}_{l} , then it will converge to a globally optimal path as $n \to \infty$. **Sketch of Proof** Can get from $x_{l'}$ to every outgoing configuration (configuration leaving R); from $\mathcal{T}_{l'}$ construction. Every outgoing configuration has a path to x_{G} from \mathcal{T}_{G} ; by the definition of $\mathcal{F}_{\mathscr{O}}$. Possible new sampling region for a Dubins' vehicle (car with no reverse). Each circle has a radius of 2ρ (ρ is the minimum turning radius). The boundary of R is in blue. Let the green line be a trajectory from $x_{l'}$ to some other configuration inside R. Take circles of radius ρ (or greater) and place them tangent to the path and ∂R as shown. Create a new path that follows the old the circles, and ∂R . By construction this new path (yellow) has a shorter length than the original one (green). ## **Outline** - Introduction - Motivation - Background - Goal Tree Algorithm - Optimality of the Goal Tree Algorithm - Characterizations of the New Sampling Region - Goal Tree Algorithm Simulation - Conclusion - Configuration: x-position, y-position, and orientation θ - Minimum turning radius, ρ - Constant speed, v - Control input, u $$\dot{x}(t) = v\cos(\theta) \tag{1a}$$ $$\dot{y}(t) = v \sin(\theta) \tag{1b}$$ $$\dot{ heta}(t)=u, \quad |u|\leq rac{v}{ ho}, \qquad ext{(1c)}$$ Figure: Minimum cost path to x_G as a function of algorithm runtime, averaged over 100 simulations, for a Dubins' vehicle. runtime (min) ## **Outline** - Introduction - Motivation - Background - Goal Tree Algorithm - Optimality of the Goal Tree Algorithm - Characterizations of the New Sampling Region - Goal Tree Algorithm Simulation - Conclusion ## Summary - Introduced the Goal Tree algorithm for replanning in environments with unexpected obstacles - The GT is asymptotically optimal - A new sampling region R is proven to allow \mathcal{T}_l to recover the optimal path - Simulation results from the Dubins' vehicle show improved performance over the RRT* ### **Future Work** - Characterize R for higher dimensional systems with differential constraints - How to determine \(\mathcal{S} \) efficiently for use with the GT - Extend the GT for use with multiple robots with multiple tasks - Root a tree at each task location - Each robot builds its own tree rooted at its current location - Possibly integrate cooperative control ideas #### References F. Bullo, J. Cortés, and S. Martínez (2009) Distributed Control of Robotic Networks Princeton University Press; Applied Mathematics Series http://coordinationbook.info S. LaValle (2006) Planning Algorithms Cambridge University Press http://planning.cs.uiuc.edu S. Karaman and E. Frazzoli (2011) Sampling-Based Algorithms for Optimal Motion Planning The International Journal of Robotics Research; Vol 30, No. 7, pgs 846–894